Strona korzysta z plików cookies w celu realizacji usług i zgodnie z polityką plików cookies.
Możesz określić warunki przechowywania lub dostępu do plików cookies w Twojej przeglądarce.

Kalkulator kombinatoryki

Kalkulator kombinatoryczny służy do obliczania poszczególnych zagadnień z kombinatoryki: permutacja bez powtórzeń, permutacja z powtórzeniami, wariancja bez powtórzeń, wariacja z powtórzeniami, kombinacja bez powtórzeń, kombinacja z powtórzeniami. Aby obliczyć dany wynik należy przejść do wybranego zagadnienia i wprowadzić wartości w polu: Wprowadź dane i kliknąć przycisk oblicz.

Permutacje bez powtórzeń

Permutację bez powtórzeń wykorzystujemy wtedy, gdy chcemy wiedzieć ile możemy stworzyć różnych układów n-elementowych, mając do dyspozycji tyle samo elementów, przy czym kolejność elementów w układzie jest istotna, a elementy nie mogą się powtarzać.

Przykład: Mając w zbiorze 3 cyfry (n): 1,2,3, na ile sposobów możemy ułożyć 3(k) elementowe ciągi, np.: 123; 321; tak, aby w ciągu NIE powtarzały się cyfry?

Wprawdź dane:

Permutacje z powtórzeniami

Permutację z powtórzeniami wykorzystujemy wtedy, gdy chcemy wiedzieć ile możemy stworzyć różnych układów n-elementowych, mając do dyspozycji tyle samo elementów, przy czym kolejność elementów w układzie jest nieistotna, a elementy mogą się powtarzać.

Przykład: Mając litery: K,O,K,L,O,K czyli 3(n1) litery „K”, 2(n2) litery „O” oraz 1(n3) literę „L”, ile ciągów (różnych napisów) możemy ułożyć, np.: KOOKKL; KOKOLK? Aby obliczyć szukaną permutacje z powtórzeniami należy wpisać ilość powtarzania się kolejnych elementów oddzielone przecinkami. W przypadku liter K,O,K,L,O,K wpiszemy ciąg: 3,2,1 litera „K” powtarza się 3 razy, litera „O” 2-razy oraz litera „L” 1 raz.

Wprawdź dane:

Wariacje bez powtórzeń

Wariację bez powtórzeń wykorzystujemy wtedy, gdy chcemy wiedzieć ile możemy stworzyć różnych układów k-elementowych, mając do dyspozycji n-elementów, przy czym kolejność elementów w układzie jest istotna, a elementy nie mogą się powtarzać.

Przykład: Mając w zbiorze 5 cyfr (n): 1,2,3,4,5, na ile sposobów możemy ułożyć 3(k) elementowe ciągi, np.: 124; 325; tak, aby w ciągu NIE powtarzały się cyfry?

Wprawdź dane:

Wariacje z powtórzeniami

Wariację z powtórzeniami wykorzystujemy wtedy, gdy chcemy wiedzieć ile możemy stworzyć różnych układów k-elementowych, mając do dyspozycji n-elementów, przy czym kolejność elementów w układzie jest istotna, a elementy mogą się powtarzać.

Przykład: Mając w zbiorze 5 cyfr (n): 1,2,3,4,5, na ile sposobów możemy ułożyć 2(k) elementowe ciągi, np.: 12; 32; 44; 55?

Wprawdź dane:

Kombinacje bez powtórzeń

Kombinację bez powtórzeń wykorzystujemy wtedy, gdy chcemy wiedzieć ile możemy stworzyć różnych układów k-elementowych, mając do dyspozycji n-elementów, przy czym kolejność elementów w układzie jest nieistotna, a elementy nie mogą się powtarzać.

Przykład: Losując 6 liczb (k) z 49 (n) (lotto), ile jest możliwych do uzyskania układów? Liczby nie mogą się powtarzać oraz kolejność nie jest ważna. Wynik: 1, 3, 12, 34, 45, 46 jest tym samym co wynik: 3; 12; 45; 1; 46; 34

Wprawdź dane:

Kombinacje z powtórzeniami

Kombinację z powtórzeniami wykorzystujemy wtedy, gdy chcemy wiedzieć ile możemy stworzyć różnych układów k-elementowych, mając do dyspozycji n-elementów, przy czym kolejność elementów w układzie jest nieistotna, a elementy mogą się powtarzać.

Przykład: Losując 2 cyfry (k) z 4 (n) (np.: 1,2,3,4), ile jest możliwych do uzyskania układów? Liczby mogą się powtarzać oraz kolejność nie jest ważna. Wynik: 1,4 jest tym samym co wynik 4,1

Wprawdź dane: