Strona korzysta z plików cookies w celu realizacji usług i zgodnie z polityką plików cookies.
Możesz określić warunki przechowywania lub dostępu do plików cookies w Twojej przeglądarce.

Prawdopodobieństwo

Prawdopodobieństwo w praktyce oznacza szansę, możliwość wystąpienia pewnego zdarzenia. Dla przykładu: Jaka jest szansa na to, że w następnym losowaniu dużego lotka trafię "szóstkę"?  Jakie jest prawdopodobieństwo tego, że jutro akcje, które kupiliśmy na giełdzie wzrosną o 2%? Prawdopodobieństwo odnosi się do do możliwości wystąpienia jakiegoś zdarzenia bądź kilku zdarzeń. Potocznie, prawdopodobieństwo próbuje przewidzieć przyszłość, określić, opisać szansę wystąpienia pewnych zdarzeń.

Prawdopodobieństwo najczęściej odnosimy do przyszłości, do stanu, w którym nie znamy jeszcze wyniku, rezultatu. Możemy jednak również wyznaczać ile wynosiło prawdopodobieństwo wystąpienia danego zjawiska w przeszłości, np: jaką mieliśmy szansę na to, że urodziliśmy się jako dziewczynki lub chłopcy?

Prawdopodobieństwo pewnego zdarzenia określa się za pomocą bądź wyliczeń matematycznych, teorii danego zjawiska, np: rzut monetą bądź też na podstawie analizy wcześniejszego zachowania, np: kurs akcji. Na pewnej podstawie wyznaczamy prawdopodobieństwo zajścia danego zdarzenia. Gdy chcemy określić ile wynosi prawdopodobieństwo tego, że w następnym rzucie monetą wypadnie orzeł nie musimy opierać się na tym jakie były poprzednie losowania. Wiemy, że mamy dwa możliwe zdarzenia (o równych szansach wystąpienia), zatem prawdopodobieństwo wypadnięcia orła wynosi 0,5. Jednak prawdopodobieństwo nie ogranicza się jedynie do zdarzeń czysto teoretycznych. Modele statystyczne próbują na podstawie teorii oraz analizy wcześniejszych zdarzeń określić prawdopodobieństwo wystąpienia pewnych zjawisk w codziennym życiu, np: pogoda, kurs akcji, szansa zachorowania na raka, itd.

Mówiąc prawdopodobieństwo najczęściej tak naprawdę mówi się o prawdopodobieństwie klasycznym lub prawdopodobieństwie geometrycznym, poniżej zamieściliśmy definicję pojęcia prawdopodobieństwo, które jest czymś nadrzędnym dla tych pojęć.


Definicja

Prawdopodobieństwo jest funkcją P określoną na rodzinie zdarzeń o wartościach w zbiorze liczb rzeczywistych, która zdarzeniu A takiemu, że A ∈ Ω (gdzie Ω jest to zbiór zdarzeń elementarnych) przyporządkowuje wartość P(A) spełniającą następujące warunki:

1)      P(A) ≥ 0

Oznacza to, że prawdopodobieństwo jest liczbą dodatnią ewentualnie zerem (nie może być ujemne).

2)      P(Ω) = 1

Oznacza to, że prawdopodobieństwo wystąpienia jednego z wszystkich możliwych zdarzeń wynosi 1 czyli jest pewne.

3)      P(Aυ Aυ Aυ…)=P(A1) + P(A2) + P(A3) +…    gdzie A1, A2, A3, … są zdarzeniami losowymi parami rozłącznymi należącymi do jednej rodziny zdarzeń.


W przypadku gdy Ω jest skończonym zbiorem zdarzeń elementarnych, definicje prawdopodobieństwa możemy przedstawić upraszczając punkt trzeci definicji w następujący sposób:


3) → 3’) P(Aυ A2)=P(A1) + P(A2)    gdzie A1,  A2 są zdarzeniami rozłącznymi z rodziny zdarzeń


Funkcja prawdopodobieństwa posiada następujące własności (dla dowolnych A i B należących do tej samej rodziny zdarzeń):


Zbiór wartości funkcji zawiera się w przedziale od <0;1>

P(∅) = 0 – prawdopodobieństwa zdarzenia niemożliwego wynosi zero, analogicznie prawdopodobieństwo zdarzenia pewnego wynosi jeden

P(A’) = 1-P(A) lub P(A’) + P(A) = 1 – suma zdarzenia A oraz zdarzenia przeciwnego wynosi jeden

 P(A υ B)=P(A) + P(B) - P(A ∩ B) – aby obliczyć prawdopodobieństwo sumy zdarzeń A i B należy dodać do siebie prawdopodobieństwo tych zdarzeń i odjąć od nich ich prawdopodobieństwo ich części wspólnej.

Zauważenie zjawiska występowania częstości względnej stało się fundamentem do przyjęcia postulatu, że każdemu zjawisku odpowiada dokładnie jedna liczba będąca teoretycznym odpowiednikiem częstości tego zdarzenia losowego, co w konsekwencji daje teoretyczną miarę zajścia danego zdarzenia. Wartość prawdopodobieństwa wyznacza się najczęściej badając symetrię układu występowania zdarzeń elementarnych, szukając proporcji lub kształtu doświadczenia losowego, bywa też i tak, że wartość wylicza się na podstawie wyników otrzymanych z bardzo dużej ilości powtórzonych doświadczeń losowych.