Równanie reologiczne elementu Maxwella wyrażone jest wzorem:
\(\cfrac{d\gamma}{dt}=\cfrac{1}{G}\left(\cfrac{d\tau}{dt}\right)+\cfrac{\tau}{\eta}\)
\(\cfrac{d\gamma}{dt}=\cfrac{1}{G}\left(\cfrac{d\tau}{dt}\right)+\cfrac{\tau}{\eta}\)
gdzie:
\(\gamma\) - odkształcenie elementu Maxwella \([-]\),
\(G\) - parametr reologiczny charakteryzujący element sprężysty - moduł sprężystości \([Pa]\),
\(\eta\) - parametr reologiczny charakteryzujący element lepki - lepkość \([Pa\cdot s]\),
\(\tau\) - naprężenie styczne \([\frac{N}{m^2}]\),
\(t\) - czas \([s]\).
Wzór na równanie reologiczne elementu Maxwella - jak stosować w praktyce?