W każdym trójkącie stosunek różnicy długości dwóch boków do ich sumy jest równy stosunkowi tangensa połowy różnicy przeciwległych im kątów do tangensa połowy sumy tych kątów
Zależność tę można zapisać w następujący sposób:
\(\dfrac{a - b}{a + b} = \dfrac{tg \frac{\alpha - \beta}{2}}{tg \frac{\alpha + \beta}{2}}\)
\(\dfrac{a - c}{a + c} = \dfrac{tg \frac{\alpha - \gamma}{2}}{tg \frac{\alpha + \gamma}{2}}\)
\(\dfrac{b - c}{b + c} = \dfrac{tg \frac{\beta - \gamma}{2}}{tg \frac{\beta + \gamma}{2}}\)
Wyjaśnienie symboli:
\(a, b, c\) - długości boków trójkąta
\(\alpha, \beta, \gamma\) - kąty wewnętrzne trójkąta
Twierdzenie cosinusów Carnota
Twierdzenie tangensów (Regiomontana) wzór
Przydatne kalkulatory i narzędzia
Oprócz - wzór na twierdzenie tangensów (regiomontana) może Ci się przydać
Zobacz również
- Objętość ostrosłupa ściętego - wzór
- Logarytm - wzór
- Pole powierzchni części wspólnej...
- Twierdzenie Talesa - wzór
- Rozdzielność mnożenia - wzór
- Prawa rachunku zdań - wzór
- Permutacja z powtórzeniami - wzór
- Całkowanie przez części - wzór
- Ekstremum funkcji (minimum, maksimum)...
- Objętość beczki - wzór
- Pole powierzchni pasa kulistego - wzór
- Wyznacznik macierzy 4x4 - wzór
- Logarytm pierwiastka - wzór
- Równość liczb zespolonych (urojonych)...
- Przekątna kwadratu - wzór
Twierdzenie tangensów (Regiomontana) - jak stosować w praktyce?