W każdym trójkącie stosunek różnicy długości dwóch boków do ich sumy jest równy stosunkowi tangensa połowy różnicy przeciwległych im kątów do tangensa połowy sumy tych kątów
Zależność tę można zapisać w następujący sposób:
\(\dfrac{a - b}{a + b} = \dfrac{tg \frac{\alpha - \beta}{2}}{tg \frac{\alpha + \beta}{2}}\)
\(\dfrac{a - c}{a + c} = \dfrac{tg \frac{\alpha - \gamma}{2}}{tg \frac{\alpha + \gamma}{2}}\)
\(\dfrac{b - c}{b + c} = \dfrac{tg \frac{\beta - \gamma}{2}}{tg \frac{\beta + \gamma}{2}}\)
Wyjaśnienie symboli:
\(a, b, c\) - długości boków trójkąta
\(\alpha, \beta, \gamma\) - kąty wewnętrzne trójkąta
Twierdzenie cosinusów Carnota
Twierdzenie tangensów (Regiomontana)
Przydatne kalkulatory i narzędzia
Może Ci się przydać:
Zobacz również
- Pole powierzchni torusa
- Różnica funkcji arc cos
- Funkcja okresowa
- Zamiana funkcji arc sin na inne
- Promień okręgu opisanego na...
- Ekstremum funkcji (minimum, maksimum)
- Suma pierwiastków
- Potęga pierwiastka o tym samym...
- Objętość kuli
- Łączność dodawania
- Dzielenie liczb zespolonych (urojonych)
- Równość liczby zespolonej (urojonej)...
- Monotoniczność funkcji
- Pole powierzchni równoległoboku
- Wzór na wklęsłość i wypukłość