Wzór na pierwiastek pierwiastka ma postać:
\((\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}\), gdzie
\(a \geq 0 \: i \: n \in N \setminus \left \{ 0, 1 \right \} \: i \: m \in N \setminus \left \{ 0, 1 \right \}\)
Oznacza to, że \(a\) to liczba większa bądź równe \(0\), \(n\) jest liczbą naturalną z wyłączeniem liczb \(0\) i \(1\), \(m\) jest liczbą naturalna z wyłączeniem liczb \(0\) i \(1\)
\((\sqrt[m]{\sqrt[n]{a}} = \sqrt[mn]{a}\), gdzie
\(a \geq 0 \: i \: n \in N \setminus \left \{ 0, 1 \right \} \: i \: m \in N \setminus \left \{ 0, 1 \right \}\)
Oznacza to, że \(a\) to liczba większa bądź równe \(0\), \(n\) jest liczbą naturalną z wyłączeniem liczb \(0\) i \(1\), \(m\) jest liczbą naturalna z wyłączeniem liczb \(0\) i \(1\)
Wzór na pierwiastek pierwiastka - jak stosować w praktyce?