Wzór na pole powierzchni walca wydrążonego (rury) ma postać:
\(P = 2P_p + P_b\)
\(P_p = \pi R^2 - \pi r^2 \ = \pi (R^2 - r^2)\)
\(P_b = 2 \pi R h + 2 \pi r h = 2 \pi h (R + r)\)
\(P = 2 \pi (R^2 - r^2) + 2 \pi h (R + r)\)
Wyjaśnienie symboli:
\(P\) - pole powierzchni całkowitej walca wydrążonego (rury)
\(R\) - promień walca zewnętrznego
\(r\) - promień walca wewnętrznego
\(h\) - wysokość walców
\(P = 2P_p + P_b\)
\(P_p = \pi R^2 - \pi r^2 \ = \pi (R^2 - r^2)\)
\(P_b = 2 \pi R h + 2 \pi r h = 2 \pi h (R + r)\)
\(P = 2 \pi (R^2 - r^2) + 2 \pi h (R + r)\)
Wyjaśnienie symboli:
\(P\) - pole powierzchni całkowitej walca wydrążonego (rury)
\(R\) - promień walca zewnętrznego
\(r\) - promień walca wewnętrznego
\(h\) - wysokość walców
Wzór na pole powierzchni walca wydrążonego (rury) - jak stosować w praktyce?