Wzór na dzielenie pierwiastków ma postać:
\(\sqrt[n]{\dfrac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}\), gdzie
\(a \geq 0, b > 0, \: i \: n \in N \setminus \left \{ 0, 1 \right \} \: i \: m \in N \setminus \left \{ 0, 1 \right \}\)
Oznacza to, że \(a\) to liczba większa bądź równa \(0\), \(b\) to liczba większa od \(0\) , \(n\) jest liczbą naturalną z wyłączeniem liczb \(0\) i \(1\), \(m\) jest liczbą naturalna z wyłączeniem liczb \(0\) i \(1\)
Pierwiastkowanie
Wzór na dzielenie pierwiastków wzór
Oprócz - wzór na dzielenie pierwiastków może Ci się przydać
Zobacz również
- Permutacja z powtórzeniami - wzór
- Funkcja okresowa - wzór
- Pole powierzchni pierścienia - wzór
- Twierdzenie o trzech ciągach - wzór
- Logarytm - wzór
- Pole powierzchni stożka obrotowego -...
- Rozdzielność mnożenia - wzór
- Objętość torusa - wzór
- Pole powierzchni pryzmatoidu - wzór
- Wariacja z powtórzeniami - wzór
- Całkowanie przez podstawienie - wzór
- Pole powierzchni prostopadłościanu -...
- Wzór na odległość punktu od prostej -...
- Objętość ostrosłupa dowolnego - wzór
- Dzielenie pierwiastków - wzór
Wzór na dzielenie pierwiastków - jak stosować w praktyce?