Wzór na potęgę pierwiastka o tym samym wykładniku ma postać:
\((\sqrt[n]{a})^n = a\), gdzie
\(a \geq 0, b \geq 0, \: i \: n \in N \setminus \left \{ 0, 1 \right \}\)
Oznacza to, że \(a \: i \: b\) są to liczby większę bądź równe \(0\), \(n\) jest liczbą naturalną z wyłączeniem liczb \(0\) i \(1\)
\((\sqrt[n]{a})^n = a\), gdzie
\(a \geq 0, b \geq 0, \: i \: n \in N \setminus \left \{ 0, 1 \right \}\)
Oznacza to, że \(a \: i \: b\) są to liczby większę bądź równe \(0\), \(n\) jest liczbą naturalną z wyłączeniem liczb \(0\) i \(1\)
Wzór na potęgę pierwiastka o tym samym wykładniku - jak stosować w praktyce?