Funkcje trygonometryczne potrojonego kąta mają następującą postać:
\(sin 3 \alpha = sin \alpha (3 cos^2 \alpha - sin^2 \alpha) = sin \alpha (3 - 4 sin^2 \alpha)\)
\(cos 3 \alpha = cos \alpha (cos^2 \alpha - 3 sin^2 \alpha) = cos \alpha (4 cos^2 \alpha - 3)\)
\(tg 3 \alpha = \dfrac{tg \alpha (3 - tg^2 \alpha)}{1 - 3 tg^2 \alpha}\), gdy \(cos \alpha \neq 0 \: i \: cos 3 \alpha \neq 0\)
\(ctg 3 \alpha = \dfrac{ctg \alpha (ctg^2 \alpha - 3)}{3 ctg^2 \alpha - 1}\), gdy \(sin \alpha \neq 0 \: i \: sin 3 \alpha \neq 0\)
Funkcje trygonometryczne potrojonego kąta
Przydatne kalkulatory i narzędzia
Może Ci się przydać:
Zobacz również
- Suma funkcji arc cos
- Pole powierzchni ostrosłupa dowolnego
- Zamiana funkcji arc sin na inne
- Całkowanie przez części
- Promień okręgu opisanego na n-kącie...
- Wariacja bez powtórzeń
- Twierdzenie sinusów (Snelliusa)
- Twierdzenie Bézouta
- Promień okręgu wpisanego w pięciokąt...
- Permutacja z powtórzeniami
- Prawa rachunku zdań
- Zamiana funkcji arc tg na inne
- Odejmowanie liczb zespolonych...
- Radian
- Logarytm iloczynu