Wzór na sumę funkcji arc sin ma postać:
\(arc \: sin \: x + arc \: sin \: y = \begin{cases}
\: arc \: sin \: (x \sqrt{1 - y^2} + y \sqrt{1-x^2})\\
dla \: \: x \cdot y \leqslant 0 \: \: lub \: \: x^2 + y^2 \leq 1\\
\\
\: \pi - arc \: sin \:(x \sqrt{1-y^2} + \sqrt {1-x^2})\\
dla \: \: x>0,\: y>0 \:\: i \: \: x^2 + y^2>1\\
\\
-\pi - arc \: sin \: (x \sqrt{1-y^2}+y \sqrt{1-x^2}) \\
dla \: \: x<0, \: y<0, \: \: {i} \:\: x^2 + y^2> 1 \end{cases}\)
Wzór na różnicę funkcji arc cos
Wzór na sumę funkcji arc sin wzór
Przydatne kalkulatory i narzędzia
Oprócz - wzór na sumę funkcji arc sin może Ci się przydać
Zobacz również
- Twierdzenie Bézouta - wzór
- Pole powierzchni części wspólnej...
- n-ty wyraz ciągu geometrycznego - wzór
- Funkcja okresowa - wzór
- Objętość warstwy kulistej - wzór
- Wariacja z powtórzeniami - wzór
- Pole powierzchni koła - wzór
- Objętość ostrosłupa prawidłowego - wzór
- Wyznacznik macierzy 4x4 - wzór
- Parzystość i nieparzystość funkcji -...
- Łączność mnożenia - wzór
- Macierz odwrotną 4x4 - wzór
- Objętość wycinka kuli - wzór
- Logarytm pierwiastka - wzór
- Logarytm iloczynu - wzór
Wzór na sumę funkcji arc sin - jak stosować w praktyce?