Wzór na R-kwadrat (współczynnik determinacji) w modelu regresji liniowej ma postać:
\(R^2 = \dfrac{\sum\limits_{t=1}^{n}(\hat{y}_t - \bar{y})^2}{\sum\limits_{t=1}^{n}(y_t - \bar{y})^2}\)
Gdzie:
\(R^2\) - R-kwadrat, współczynnik determinacji
\(t\) - kolejne obserwacje w próbie
\(y_t\) - obserwowana wartość zmiennej zależnej (mierzona)
\(\hat{y}_t\) - przwidywana wartość zmiennej zależnej na podstawie modelu regresji
\(\bar{y}\) - średnia obserwowana wartość zmiennej zależnej
Wzór na R-kwadrat, współczynnik determinacji w modelu regresji liniowej wzór
Oprócz - wzór na r-kwadrat, współczynnik determinacji w modelu regresji liniowej może Ci się przydać
Zobacz również
- Test Levene'a - wzór
- Współczynnik skośności - wzór
- Odległość Mahalanobisa - wzór
- Średnia - wzór
- Rozkład normalny - funkcja gęstości -...
- Regresja logistyczna - wzór
- Rozstęp - wzór
- Statystyka Walda - test - wzór
- Kowariancja - wzór
- Średni procentowy błąd bezwzględny...
- Wskaźnik tolerancji w modelach...
- Korelacja rho-Spearmana - różnica...
- Jednoczynnikowa analiza wariancji - wzór
- Odchylenie ćwiartkowe - wzór
- Współczynniki prostej regresji...
Wzór na R-kwadrat, współczynnik determinacji w modelu regresji liniowej - jak stosować w praktyce?