Eszkola

Wzór na współczynnik wnikania ciepła dla obracającej się rury dookoła osi do niej prostopadłej wzór

Wzór na współczynnik wnikania ciepła dla obracającej się rury dookoła osi do niej prostopadłej ma postać:

\(\alpha=31,32\cfrac{R_1}{R_1-R_2}\left[1-\left(\cfrac{R_2}{R_1}\right)^{\frac{4}{3}}\right]^{\frac{3}{4}}\sqrt[4]{\cfrac{n^2r\lambda^3\rho^2}{\eta\Delta t}}\)

gdzie:

\(\alpha\) - współczynnik wnikania ciepła dla obracającej się rury dookoła osi równoległej do osi rury \([\cfrac{W}{m^2\cdot K}]\),

\(n\) - liczba obrotów rury \([\cfrac{1}{s}]\),

\(r\) - promień rury \([m]\),

\(\lambda\) - współczynnik przewodzenia ciepła cieczy \([\cfrac{W}{m\cdot K}]\),

\(\rho\) - gęstość cieczy \([\cfrac{kg}{m^3}]\),

\(\eta\) - współczynnik dynamiczny lepkości cieczy \([\cfrac{kg}{m\cdot s}]\),

\(t\) - temperatura \([K]\),

\(R_1\) - odległość dalszego końca rury od osi obrotu \([m]\),

\(R_2\) - odległość bliższego końca rury od osi obrotu \([m]\).



Wzór na współczynnik wnikania ciepła dla obracającej się rury dookoła osi do niej prostopadłej - jak stosować w praktyce?

1×3 =

Oprócz - wzór na współczynnik wnikania ciepła dla obracającej się rury dookoła osi do niej prostopadłej może Ci się przydać