Trójkąt Pascala ma postać:
Trójkąt Pascala zapisany za pomocą symbolu Newtona ma postać:
\(n = 0\) | \(1\) |
\(n = 1\) | \(1\) \(1\) |
\(n = 2\) | \(1\) \(2\) \(1\) |
\(n = 3\) | \(1\) \(3\) \(3\) \(1\) |
\(n = 4\) | \(1\) \(4\) \(6\) \(4\) \(1\) |
\(n = 5\) | \(1\) \(5\) \(10\) \(10\) \(5\) \(1\) |
Trójkąt Pascala zapisany za pomocą symbolu Newtona ma postać:
\(n = 0\) | \(\binom{0}{0}\) |
\(n = 1\) | \(\binom{1}{0}\) \(\binom{1}{1}\) |
\(n = 2\) | \(\binom{2}{0}\) \(\binom{2}{1}\) \(\binom{2}{2}\) |
\(n = 3\) | \(\binom{3}{0}\) \(\binom{3}{1}\) \(\binom{3}{2}\) \(\binom{3}{3}\) |
\(n = 4\) | \(\binom{4}{0}\) \(\binom{4}{1}\) \(\binom{4}{2}\) \(\binom{4}{3}\) \(\binom{4}{4}\) |
\(n = 5\) | \(\binom{5}{0}\) \(\binom{5}{1}\) \(\binom{5}{2}\) \(\binom{5}{3}\) \(\binom{5}{4}\) \(\binom{5}{5}\) |
Trójkąt Pascala - jak stosować w praktyce?