Wzór Herona pozwala obliczyć pole trójkąta, jeżeli znane są długości jego boków (a, b i c)
Wzór Herona ma postać:
\(P = \sqrt{p(p - a)(p - b)(p - c)}\)
\(p = \dfrac{a + b + c}{2}\)
Wyjaśnienie symboli:
\(P\) - pole trójkąta
\(a, b, c\) - długości boków trójkąta
\(p\) - połowa obwodu trójkąta
Pole powierzchni trójkąta dowolnego
Wzór Herona wzór
Oprócz - wzór na wzór herona może Ci się przydać
Zobacz również
- Promień okręgu opisanego na kwadracie...
- Dodawanie liczb zespolonych...
- Średnia kwadratowa - wzór
- Pole powierzchni sześciokąta...
- Włączanie liczby pod pierwiastek - wzór
- n-ty wyraz ciągu arytmetycznego - wzór
- Pole powierzchni trapezu - wzór
- Logarytm ilorazu - wzór
- Suma n pierwszych wyrazów ciągu...
- Pole powierzchni kuli - wzór
- Wzór Herona - wzór
- Średnia harmoniczna - wzór
- Twierdzenie Talesa - wzór
- Punkt przegięcia - wzór
- Pole powierzchni pięciokąta...
Wzór Herona - jak stosować w praktyce?